Advertisements
Advertisements
Question
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
Sum
Solution
\[\int\frac{\cos \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}}\]
\[\text{ let } \text{ sin } \left( 2x \right) = t\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \times 2 \cdot dx = dt\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \cdot dx = \frac{dt}{2}\]
\[Now, \int\frac{\text{ cos } \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}} \]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t^2 + \left( 2\sqrt{2} \right)^2}}\]
\[ = \frac{1}{2}\text{ log }\left| t + \sqrt{t^2 + 8} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \text{ sin }\left( 2x \right) + \sqrt{\text{ sin }^2 \left(\text{ 2x }\right) + 8} \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^5 x \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x \sin x \cos x\ dx\]
\[\int \log_{10} x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]