English

∫ 1 X ( X N + 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{dx}{x \left( x^n + 1 \right)}\]

\[ = \int\frac{x^{n - 1} dx}{x^{n - 1} x \left( x^n + 1 \right)}\]

\[ = \int\frac{x^{n - 1} dx}{x^n \left( x^n + 1 \right)}\]

Putting `x^n = t`

\[ \Rightarrow n x^{n - 1} dx = dt\]

\[ \Rightarrow x^{n - 1} dx = \frac{dt}{n}\]

\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \left( t + 1 \right)}\]

\[\text{Let }\frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]

\[ \Rightarrow \frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + Bt}{t \left( t + 1 \right)}\]

\[ \Rightarrow 1 = A \left( t + 1 \right) + Bt\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[1 = A \times 0 + B \left( - 1 \right)\]

\[ \Rightarrow B = - 1\]

Putting `t = 0`

\[1 = A \left( 0 + 1 \right) + B \times 0\]

\[ \Rightarrow A = 1\]

Then,

\[I = \frac{1}{n}\int\frac{dt}{t} - \frac{1}{n}\int\frac{dt}{t + 1}\]

\[ = \frac{1}{n} \log \left| t \right| - \frac{1}{n}\log \left| t + 1 \right| + C\]

\[ = \frac{1}{n} \log \left| \frac{t}{t + 1} \right| + C\]

\[ = \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 23 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×