English

Evaluate the Following Integral: ∫ X 2 ( X 2 + a 2 ) ( X 2 + B 2 ) D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
Sum

Solution

\[\text{Let }I = \int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
We express
\[\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2}\]
\[ \Rightarrow x^2 = A\left( x^2 + b^2 \right) + B\left( x^2 + a^2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[1 = A + B\text{ and }0 = b^2 A + a^2 B\]
\[or A = - \frac{a^2}{b^2 - a^2}\text{ and }B = \frac{b^2}{b^2 - a^2}\]
\[ \therefore I = \int\left( \frac{- \frac{a^2}{b^2 - a^2}}{x^2 + a^2} + \frac{\frac{b^2}{b^2 - a^2}}{x^2 + b^2} \right)dx\]
\[ = - \frac{a^2}{b^2 - a^2}\int\frac{1}{x^2 + a^2}dx + \frac{b^2}{b^2 - a^2}\int\frac{1}{x^2 + b^2} dx\]
\[ = - \frac{a}{b^2 - a^2} \tan^{- 1} \frac{x}{a} + \frac{b}{b^2 - a^2} \tan^{- 1} \frac{x}{b} + c\]
\[\text{Hence, }\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx = - \frac{a}{b^2 - a^2} \tan^{- 1} \frac{x}{a} + \frac{b}{b^2 - a^2} \tan^{- 1} \frac{x}{b} + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 58 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \cos^3 x\ dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×