हिंदी

∫ Sin − 1 X X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
योग

उत्तर

\[\text{ Let I} = \int \frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\text{ Putting x }= \sin \theta\]

\[ \Rightarrow \theta = \sin^{- 1} x\]

\[ \text{and}\ dx = \cos \text{ θ  dθ }\]

\[ \therefore I = \int \frac{\theta . \cos \theta}{\sin^2 \theta}d\theta\]

\[ = \int \theta . \left( \frac{\cos \theta}{\sin \theta} \right) \times \frac{1}{\sin \theta} d\theta\]

\[ = \int \theta_I . \text{ cosec} _{II}  θ  \cot \text{ θ  dθ }\]

\[ = \theta\int cosec \theta \cot \text{ θ  dθ } - \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int cosec \theta \cot \text{ θ  dθ }\right\}d\theta\]

\[ = \theta \left( - \text{ cosec }\theta \right) - \int1 . \left( - cosec \theta \right) d\theta\]

\[ = - \theta \text{ cosec }\theta + \int cosec \text{ θ  dθ }\]

\[ = - \theta \text{ cosec }\theta + \text{ ln }\left| \text{ cosec }\theta - \cot \theta \right| + C\]

\[ = \frac{- \theta}{\sin \theta} + \text{ ln }\left| \frac{1 - \text{ cos }\theta}{\sin \theta} \right| + C\]

\[ = \frac{- \theta}{\sin \theta} + \text{ ln} \left| \frac{1 - \sqrt{1 - \sin^2 \theta}}{\sin \theta} \right| + C\]

\[ = \frac{- \sin^{- 1} x}{x} + \text{ ln } \left| \frac{1 - \sqrt{1 - x^2}}{x} \right| + C \left[ \because \theta = \sin^{- 1} x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 39 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫      tan^5    x   dx `


\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×