हिंदी

∫ X 2 Sin − 1 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \sin^{- 1} x\ dx\]
योग

उत्तर

\[\int {x^2}_{II} . \sin^{- 1}_I x \text{ dx }\]
\[ = \sin^{- 1}_{} x\int x^2 dx - \int\left\{ \frac{d}{dx}\left( \sin^{- 1}_{} x \right)\int x^2 dx \right\}dx\]
\[ = \sin^{- 1} x . \frac{x^3}{3} - \int\frac{1}{\sqrt{1 - x^2}} \frac{x^3}{3}dx\]
\[\text{  Let 1} - x^2 = t\]
\[ \Rightarrow x^2 = 1 - t\]
\[ \Rightarrow -\text{  2x dx } = dt\]
\[ \Rightarrow\text{  x dx } = - \frac{dt}{2}\]


\[ \therefore \int {x^2}_{} . \sin^{- 1}_{} \text{ x dx } = \sin^{- 1} x . \frac{x^3}{3} - \frac{1}{3}\int \frac{x^2 . x}{\sqrt{1 - x^2}}dx\]


\[ = \sin^{- 1} x . \frac{x^3}{3} - \frac{1}{6}\int \frac{\left( 1 - t \right)}{\sqrt{t}}dt\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{1}{6}\int t^{- \frac{1}{2}} dt - \frac{1}{6}\int t^\frac{1}{2} dt\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{1}{6} \times 2\sqrt{t} - \frac{1}{6} \times \frac{2}{3} t^\frac{3}{2} + C\]
\[ = \sin^{- 1} x . \frac{x^3}{3} + \frac{\sqrt{1 - x^2}}{3} - \frac{1}{9} \left( 1 - x^2 \right)^\frac{3}{2} + C \left( \because 1 - x^2 = t \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 38 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`∫     cos ^4  2x   dx `


\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫      tan^5    x   dx `


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×