हिंदी

∫ X √ X + a − √ X + B D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
योग

उत्तर

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[ = \int\frac{x}{\sqrt{x + a} - \sqrt{x + b}} \times \frac{\sqrt{x + a} + \sqrt{x + b}}{\sqrt{x + a} + \sqrt{x + b}}dx\]
\[ = \int\frac{x\left( \sqrt{x + a} + \sqrt{x + b} \right)}{\left( \sqrt{x + a} \right)^2 - \left( \sqrt{x + b} \right)^2}dx\]
\[ = ∫  \frac{x\left( \sqrt{x + a} + \sqrt{x + b} \right)}{x + a - x - b}dx\]
\[ = \frac{1}{a - b}\  ∫ x\left( \sqrt{x + a} + \sqrt{x + b} \right) dx\]
\[ = \frac{1}{a - b}\left[  ∫ x \left( \sqrt{x + a} \right) dx + \ ∫x\left( \sqrt{x + b} \right) dx \right]\]
\[ = \frac{1}{a - b}\left[ ∫ \left( x + a - a \right)\left( \sqrt{x + a} \right) dx + \int\left( x + b - b \right)\left( \sqrt{x + b} \right) dx \right]\]
\[ = \frac{1}{a - b}\left[ \int\left( x + a \right)\left( \sqrt{x + a} \right) dx - a\int\left( \sqrt{x + a} \right) dx + \int\left( x + b \right)\left( \sqrt{x + b} \right) dx - b\int\left( \sqrt{x + b} \right) dx \right]\]
\[ = \frac{1}{a - b}\left[ \int \left( x + a \right)^\frac{3}{2} dx - a\int \left( x + a \right)^\frac{1}{2} dx + \int \left( x + b \right)^\frac{3}{2} dx - b\int \left( x + b \right)^\frac{1}{2} dx \right]\]
\[ = \frac{1}{a - b}\left[ \frac{\left( x + a \right)^\frac{5}{2}}{\frac{5}{2}} - a\frac{\left( x + a \right)^\frac{3}{2}}{\frac{3}{2}} + \frac{\left( x + b \right)^\frac{5}{2}}{\frac{5}{2}} - b\frac{\left( x + b \right)^\frac{3}{2}}{\frac{3}{2}} \right] + \text{c             where, c is an arbitrary constant}\]
\[ = \frac{1}{a - b}\left[ \frac{2}{5} \left( x + a \right)^\frac{5}{2} - \frac{2a}{3} \left( x + a \right)^\frac{3}{2} + \frac{2}{5} \left( x + b \right)^\frac{5}{2} - \frac{2b}{3} \left( x + b \right)^\frac{3}{2} \right] + \text{c             where, c is an arbitrary constant}\]
\[Hence, \int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx = \frac{1}{a - b}\left[ \frac{2}{5} \left( x + a \right)^\frac{5}{2} - \frac{2a}{3} \left( x + a \right)^\frac{3}{2} + \frac{2}{5} \left( x + b \right)^\frac{5}{2} - \frac{2b}{3} \left( x + b \right)^\frac{3}{2} \right] + \text{c           where, c is an arbitrary constant}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.05 | Q 10 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( 3x + 4 \right)^2 dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \sin^2\text{ b x dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \cot^4 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×