हिंदी

∫ X 2 + X − 1 ( X + 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{\left( x^2 + x - 1 \right) dx}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]

\[\text{Let }\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 1 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x + 2 \right) + C \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]

\[ \Rightarrow x^2 + x - 1 = A \left( x^2 + 3x + 2 \right) + B \left( x + 2 \right) + C \left( x^2 + 2x + 1 \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 1 .................(1)\]

\[3A + B + 2C = 1 ...................(2)\]

\[2A + 2B + C = - 1 .......................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 0 \]

\[B = - 1\]

\[C = 1\]

\[ \therefore \frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 1}{\left( x + 1 \right)^2} + \frac{1}{x + 2}\]

\[ \Rightarrow I = \int\frac{- dx}{\left( x + 1 \right)^2} + \int\frac{dx}{x + 2}\]

\[ = - \int \left( x + 1 \right)^{- 2} dx + \int\frac{dx}{x + 2}\]

\[ = - \left[ \frac{\left( x + 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + \log \left| x + 2 \right| + C\]

\[ = \frac{1}{\left( x + 1 \right)} + \log \left| x + 2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 32 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cos^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×