मराठी

∫ X 2 + X − 1 ( X + 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{\left( x^2 + x - 1 \right) dx}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]

\[\text{Let }\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 1 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x + 2 \right) + C \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]

\[ \Rightarrow x^2 + x - 1 = A \left( x^2 + 3x + 2 \right) + B \left( x + 2 \right) + C \left( x^2 + 2x + 1 \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 1 .................(1)\]

\[3A + B + 2C = 1 ...................(2)\]

\[2A + 2B + C = - 1 .......................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 0 \]

\[B = - 1\]

\[C = 1\]

\[ \therefore \frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 1}{\left( x + 1 \right)^2} + \frac{1}{x + 2}\]

\[ \Rightarrow I = \int\frac{- dx}{\left( x + 1 \right)^2} + \int\frac{dx}{x + 2}\]

\[ = - \int \left( x + 1 \right)^{- 2} dx + \int\frac{dx}{x + 2}\]

\[ = - \left[ \frac{\left( x + 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + \log \left| x + 2 \right| + C\]

\[ = \frac{1}{\left( x + 1 \right)} + \log \left| x + 2 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 32 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×