हिंदी

∫ X 4 + X 4 D X is Equal to (A) 1 4 Tan − 1 X 2 + C (B) 1 4 Tan − 1 ( X 2 2 ) (C) 1 2 Tan − 1 ( X 2 2 ) (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

विकल्प

  • \[\frac{1}{4} \tan^{- 1} x^2 + C\]

  • \[\frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

  • \[\frac{1}{2} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

  • none of these

MCQ

उत्तर

 \[\frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right)\]

\[\text{ Let  I } = \int\frac{x}{4 + x^4}dx\]

\[ = \int\frac{x \text{ dx}}{2^2 + \left( x^2 \right)^2}\]

\[\text{ Putting  x}^2 = t\]

\[ \Rightarrow 2x \text{ dx} = dt\]

\[ \Rightarrow x \text{ dx } = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dt}{2^2 + t^2}\]

\[ = \frac{1}{2} \times \frac{1}{2} \tan^{- 1} \left( \frac{t}{2} \right) + C \left( \because \int\frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} \right)\]

\[ = \frac{1}{4} \tan^{- 1} \left( \frac{x^2}{2} \right) + C \left( \because t = x^2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ १९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 1 | पृष्ठ १९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×