Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I}= \int\frac{\sin\left( x - a \right)}{\sin\left( x - b \right)}dx\]
\[\text{Putting x }- b = t \]
\[ \Rightarrow x = b + t\]
\[\text{and}\ dx = dt\]
`∴ I = ∫ sin( b + t - a ) / sin t dt `
`∴ I = ∫ sin {( b-a )+t } / sin t dt `
`∴ I = ∫ {sin( b - a )cos t}/sin t + ∫ {cos ( b - a ) sin t} / sin t dt `
\[ = \int\text{sin}\left( \text{b - a} \right)\text{cot t dt} + \int\text{cos}\left( b - a \right)dt\]
\[ = \text{sin}\left( \text{b - a }\right) \text{ln }\left| \text{sin t} \right| + \text{t }\text{cos}\left( b - a \right) + C\]
\[ = \text{sin}\left( \text{b - a }\right) \text{ln }\left| \text{sin}\left( \text{x - b }\right) \right| + \left( \text{x - b} \right)\text{cos}\left( \text{b - a} \right) + C \left[ \because t = x - b \right]\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
Integrate the following integrals:
` ∫ \sqrt{tan x} sec^4 x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int {cosec}^4 2x\ dx\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]