हिंदी

∫ Sin ( X − a ) Sin ( X − B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
योग

उत्तर

\[\text{Let I}= \int\frac{\sin\left( x - a \right)}{\sin\left( x - b \right)}dx\]
\[\text{Putting  x }- b = t \]
\[ \Rightarrow x = b + t\]
\[\text{and}\ dx = dt\]
`∴  I = ∫   sin( b + t - a ) / sin t  dt `
`∴  I = ∫   sin {( b-a )+t } / sin t  dt `


`∴  I = ∫   {sin( b - a )cos t}/sin t  +  ∫   {cos ( b  - a ) sin t} / sin t  dt `


\[ = \int\text{sin}\left( \text{b - a} \right)\text{cot t dt} + \int\text{cos}\left( b - a \right)dt\]
\[ = \text{sin}\left( \text{b - a }\right) \text{ln }\left| \text{sin t} \right| + \text{t }\text{cos}\left( b - a \right) + C\]
\[ = \text{sin}\left( \text{b - a }\right) \text{ln }\left| \text{sin}\left( \text{x - b }\right) \right| + \left( \text{x - b} \right)\text{cos}\left( \text{b - a} \right) + C   \left[ \because t = x - b \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 7 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


` ∫   cos  3x   cos  4x` dx  

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×