Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
उत्तर
`(cos2x + 2sin^2 x)/ cos^2x`
= `(cos 2x + (1 - cos 2x))/cos^2` [cos2x = 1-2sin2 x]
=` 1/(cos2 x)`
= `sec^2 x`
∴ \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] = \[\int\]`sec^2x dx = tan x +c`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
संबंधित प्रश्न
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int \tan^4 x\ dx\]
\[\int \cot^4 x\ dx\]
\[\int \cot^5 x\ dx\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int \sec^4 x\ dx\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int \sec^6 x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int x^2 \tan^{- 1} x\ dx\]