हिंदी

∫ √ 1 + X X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\sqrt{\frac{1 + x}{x}}dx\]

\[ = \int\frac{\sqrt{1 + x}}{\sqrt{x}} \times \frac{\sqrt{1 + x}}{\sqrt{1 + x}}dx\]

\[ = \int\left( \frac{1 + x}{\sqrt{x^2 + x}} \right)dx\]

\[\text{ Let  x }+ 1 = A\frac{d}{dx}\left( x^2 + x \right) + B\]

\[ \Rightarrow x + 1 = A \left( 2x + 1 \right) + B\]

\[ \Rightarrow x + 1 = \left( 2A \right)x + A + B\]

\[\text{Equating the coefficients of like terms}\]

\[2A = 1\]

\[ \Rightarrow A = \frac{1}{2}\]

\[\text{ and  A + B = 1 }\]

\[ \Rightarrow \frac{1}{2} + B = 1\]

\[ \therefore B = \frac{1}{2}\]

\[ \therefore I = \int\frac{\left( x + 1 \right)}{\sqrt{x^2 + x}}dx\]

\[ = \int\left( \frac{\frac{1}{2} \left( 2x + 1 \right) + \frac{1}{2}}{\sqrt{x^2 + x}} \right)dx\]

\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)}{\sqrt{x^2 + x}}dx + \frac{1}{2}\int\frac{1}{\sqrt{x^2 + x}}dx\]

\[\text{ Putting x}^2 + x = t\]

\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( x + \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2} \times 2 \sqrt{t} + \frac{1}{2} \text{ ln }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 - \frac{1}{4}} \right| + C............ \left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln }\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]

\[ = \sqrt{t} + \frac{1}{2} \text{ ln} \left| x + \frac{1}{2} + \sqrt{x^2 + x} \right| + C\]

\[ = \sqrt{x^2 + x} + \frac{1}{2} \text{ ln} \left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x} \right| + C................... \left[ \because t = x^2 + x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 53 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int e^\sqrt{x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×