हिंदी

∫ 2 X + 5 X 2 − X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
योग

उत्तर

\[\int\frac{\left( 2x + 5 \right) dx}{x^2 - x - 2}\]
\[2x + 5 = A\frac{d}{dx}\left( x^2 - x - 2 \right) + B\]
\[2x + 5 = A \left( 2x - 1 \right) + B\]
\[2x + 5 = \left( 2 A \right) x + B - A\]

Comparing the Coefficients of like powers of x

\[2 A = 2\]
\[A = 1\]
\[B - A = 5\]
\[B - 1 = 5\]
\[B = 6\]

\[\therefore 2x + 5 = 1 \cdot \left( 2x - 1 \right) + 6\]
\[ \therefore \int\left( \frac{2x + 5}{x^2 - x - 2} \right)dx\]
\[ \Rightarrow \int\left( \frac{\left( 2x - 1 \right) + 6}{x^2 - x - 2} \right)dx\]
\[ \Rightarrow \int\left( \frac{2x - 1}{x^2 - x - 2} \right)dx + 6\int\frac{dx}{x^2 - x - 2}\]
\[ = I_1 + 6 I_2 \left( \text{ say }\right) . . . \left( 1 \right)\]
\[\text{ where }\]
\[ I_1 = \int\left( \frac{2x - 1}{x^2 - x - 2} \right)\text{ dx }I_2 = \int\frac{dx}{x^2 - x - 2}\]
\[ I_1 = \int\left( \frac{2x - 1}{x^2 - x - 2} \right)dx\]
\[\text{ let x}^2 - x - 2 = t\]
\[ \Rightarrow \left( 2x - 1 \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ I_1 = \text{ log }\left( t \right)\]
\[ I_1 = \text{ log }\left| x^2 - x - 2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{x^2 - x - 2}\]
\[ I_2 = \int\frac{dx}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2}\]
\[ I_2 = \int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \frac{1}{4} - 2}\]
\[ I_2 = \int\frac{dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2}\]
\[ I_2 = \frac{1}{2 \times \frac{3}{2}} \text{ log }\left| \frac{x - \frac{1}{2} - \frac{3}{2}}{x - \frac{1}{2} + \frac{3}{2}} \right|\]
\[ I_2 = \frac{1}{3} \text{ log} \left| \frac{x - 2}{x + 1} \right| + C_2 . . . \left( 3 \right)\]
\[\int\frac{\left( 2x + 5 \right) dx}{x^2 - x - 2}\]
\[ = \text{ log} \left| x^2 - x - 2 \right| + \frac{6}{3} \text{ log} \left| \frac{x - 2}{x + 1} \right| + C_1 + C_2 \]
\[ = \text{ log }\left| x^2 - x - 2 \right| + 2 \text{ log }\left| \frac{x - 2}{x + 1} \right| + C \left( \text{ Where C }= C_1 + C_2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 8 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×