हिंदी

∫ 1 √ 1 − Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
योग

उत्तर

\[\int\frac{1}{\sqrt{1 - \cos 2x}}dx\]
\[ = \int\frac{1}{\sqrt{2 \sin^2 x}}dx \left[ \because 1 - \cos 2x = 2 \ sin^2 x \right]\]

` = 1/sqrt2 ∫  "cosec"  x  dx `
\[ = \frac{1}{\sqrt{2}}\text{ln }\left| \text{cosec x} - \text{ cot x} \right| + C\] 

` =   1/\sqrt{2}  In  | 1/ sin x  -  cos x / sin x| + C`

` =   1/\sqrt{2}  In  | {2 sin ^{2 x/2}} / sin x | + C `     ` [ ∵  1 - cos x = 2   sin^2  x/2 ]`

 

` =   1/\sqrt{2}  In  |   {2 sin ^{2x/2}} / {2sin x/2  cos  x/2 } |` + C      ` [ ∵  sin x  = 2   sin  x/2      cos  x/2 ]`
\[ = \frac{1}{\sqrt{2}} \text{ln} \left| \tan\frac{x}{2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 1 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^3 \text{ log x dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \cot^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×