Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]
योग
उत्तर
\[\text{Let I} = \int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}dx\]
\[\text{Putting}\ \sin^2 x = t\]
\[ \Rightarrow 2\sin x . \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \sin 2x = \frac{dt}{dx}\]
\[ \Rightarrow \text{sin 2x dx} = dt\]
\[ \therefore I = \int\frac{1}{a^2 + b^2 t}dt\]
\[ = \frac{1}{b^2} \text{ln }\left| a^2 + b^2 t \right| + C\]
\[ = \frac{1}{b^2} \text{ln }\left| a^2 + b^2 \sin^2 x \right| + C \left[ \because t = \sin^2 x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]