हिंदी

∫ Tan 3 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^3 x\ dx\]
योग

उत्तर

\[\text{ Let I } = \int \tan^3 x \text{ dx }\]
\[ = \int\tan x \cdot \tan^2 x\text{  dx }\]
\[ = \int\tan x \left( \sec^2 x - 1 \right)dx\]
\[ = \int\tan x \cdot \sec^2 x \text{ dx} - \int\text{ tan x dx }\]
\[\text{ Putting   tan x }= t\ in\ the\ Ist\ integral\]
\[ \Rightarrow \text{ sec}^2 \text{ x dx }= dt\]
\[ \therefore I = \int t \cdot dt - \int\text{ tan  x  dx }\]
\[ = \frac{t^2}{2} - \text{ ln }\left| \sec x \right| + C\]
\[ = \frac{\tan^2 x}{2} - \text{ ln }\left| \sec x \right| + C .............\left[ \because t = \tan x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 28 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  sec^6   x  tan    x   dx `

` ∫      tan^5    x   dx `


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×