हिंदी

∫ X Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \text{ sin 2x dx }\]
योग

उत्तर

\[\int x \text{ sin 2x dx }\]
` "Taking x as the first function and sin 2x as the second function  " `.
\[ = x\int\text{ sin 2x dx} - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx }\right\}dx\]
\[ = \frac{- x \cos 2x}{2} + \int\frac{\cos 2x}{2}dx\]
\[ = \frac{- x \cos 2x}{2} + \frac{\sin 2x}{4} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 9 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×