Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
योग
उत्तर
\[\int\frac{dx}{\sqrt{2x - x^2}}\]
\[ = \int\frac{dx}{\sqrt{2x - x^2 - 1 + 1}}\]
\[ = \int\frac{dx}{\sqrt{1 - \left( x^2 - 2x + 1 \right)}}\]
\[ = \int\frac{dx}{\sqrt{1 - \left( x - 1 \right)^2}} \]
\[ = \sin^{- 1} \left( x - 1 \right) + C \left[ \because \int\frac{dx}{\sqrt{a^2 - x^2}} = \sin^{- 1} \left( \frac{x}{a} \right) + C \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
` ∫ tan^5 x dx `
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]