हिंदी

∫ 1 C O S X + C O S E C X D X - Mathematics

Advertisements
Advertisements

प्रश्न

`  ∫    {1} / {cos x  + "cosec x" } dx  `
योग

उत्तर

` \text{ Let  I }= ∫    {1} / {cos x  + "cosec x" } dx  `
`  ∫    {sin x} / {1 +cos x  + sin x } dx  ` 


`  ∫    {2 sin x} / { 2 + 2 cos  x  +sin x  } dx  `

 


`  ∫  {sin x + cos x + sin x - cos x }/ {2 + 2 cos x  sin x } dx  `


` ∫  {sin x + cos x  }/ {2 + 2 cos x  sin x } dx + ∫ {sin x - cos x} /{2 + 2 cos x  sin x } dx `


` ∫  {sin x + cos x  }/ {3 - sin^2 x -cos^2x+2 cos  x sin x} dx + ∫ {sin x - cos x} /{1 + sin^2 x + cos^2 x + 2cos x sin x } dx `
` ∫  {sin x + cos x  }/ {3 -( sin x -cos x )^2} dx + ∫ {sin x - cos x} /{1 + (sin x+ cos x + )^2} dx `
 where,` I_1 =  ∫  {sin x + cos x  }/ {3 -( sin x -cos x )^2} dx    and       I_2  =∫ {sin x - cos x} /{1 + (sin x+ cos x + )^2} dx `
\[Now, \]

` I_1 =  ∫  {sin x + cos x  }/ {3 -( sin x -cos x )^2} dx  `
` Let  ( sin x -cos x ) `
On differentiating both sides, we get

`(  cos x + sin x )dx = dt `
\[ \therefore I_1 = \int\frac{1}{3 - \left( t \right)^2}dt\]
\[ = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + t}{\sqrt{3} - t} \right| + c_1 \]
\[ = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \left( \sin x - \cos x \right)} \right| + c_1 . . . (2)\]
\[Now, \]
\[ I_2 = \int\frac{\sin x - \cos x}{1 + \left( \sin x + \cos x \right)^2}dx\]
\[ Let \left( \sin x + \cos x \right) = t\]
 On  differentiating bothsides, weget
\[ \left( \cos x - \sin x \right)dx = dt\]
\[ \therefore I_2 = - \int\frac{1}{1 + \left( t \right)^2}dt\]
\[ = - \tan^{- 1} t + c_2 \]
\[ = - \tan^{- 1} \left( \sin x + \cos x \right) + c_2 . . . (3)\]
` "On substituting (2) and (3) in (1), we get" `
\[I = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \sin x + \cos x} \right| - \ tan^{- 1} \left( \sin x + \cos x \right) + c\]
\[Hence, \int\frac{1}{\cos x + cosec\ x}dx = \frac{1}{2\sqrt{3}}\text{ log }\left| \frac{\sqrt{3} + \sin x - \cos x}{\sqrt{3} - \sin x + \cos\ x} \right| - \tan^{- 1} \left( \sin x + \ cos\ x \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.16 [पृष्ठ ९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.16 | Q 15 | पृष्ठ ९०

संबंधित प्रश्न

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×