हिंदी

∫ X 2 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \text{ cos x dx }\]
योग

उत्तर

\[\int x^2 \text{ cos x dx }\]
`  " Taking x"^2" as the first function and  cos x as the second function . " `
\[ = x^2 \int\text{ cos x dx } - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int\text{ cos x dx }\right\}dx\]
\[ = x^2 \sin x - \int2x \text{ sin x dx }\]
\[ = x^2 \sin x - 2\left[ x\int\sin x - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx }\right\}dx \right]\]
\[ = x^2 \sin x + 2x\cos x - 2\int\text{ cos x dx }\]
\[ = x^2 \sin x + 2x \cos x - 2 \sin x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 11 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int x^3 \sin x^4 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫  sec^6   x  tan    x   dx `

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×