हिंदी

∫ ( 1 + X ) 3 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 
योग

उत्तर

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}}dx\]
\[ = \int\left( \frac{1 + x^3 + 3 \left( 1 \right)^2 x + 3\left( 1 \right) x^2}{\sqrt{x}} \right)dx\]
\[ = \int\left( \frac{1 + x^3 + 3x + 3 x^2}{\sqrt{x}} \right) dx\]
\[ = \int\left( \frac{1}{\sqrt{x}} + \frac{x^3}{\sqrt{x}} + \frac{3x}{\sqrt{x}} + \frac{3 x^2}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + x^\frac{5}{2} + 3 x^\frac{1}{2} + 3 x^\frac{3}{2} \right)dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + \frac{x^\frac{5}{2} + 1}{\frac{5}{2} + 1} + 3\frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + 3\frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2\sqrt{x} + \frac{2}{7} x^\frac{7}{2} + 2 x^\frac{3}{2} + \frac{6}{5} x^\frac{5}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 7 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×