Advertisements
Advertisements
प्रश्न
उत्तर
\[\int 1_{II} . \sec^{- 1} \sqrt{x}_I dx\]
\[ = \sec^{- 1} \sqrt{x}_{} \int1\text{ dx }- \int\left\{ \frac{d}{dx}\left( \sec^{- 1} \sqrt{x} \right)\int1 \text{ dx }\right\}dx\]
\[ = \sec^{- 1} \sqrt{x} . x - \int \frac{1}{\sqrt{x} \sqrt{1 - x}} \times \frac{1}{2\sqrt{x}} \times \text{ x dx }\]
\[ = x \sec^{- 1} \sqrt{x} - \frac{1}{2} \int \left( 1 - x \right)^{- \frac{1}{2}} dx\]
\[ = x \sec^{- 1} x - \frac{1}{2} \left[ \frac{\left( 1 - x \right)^{- \frac{1}{2} + 1}}{\left( - \frac{1}{2} + 1 \right) \left( - 1 \right)} \right] + C\]
\[ = x \sec^{- 1} x + \left( 1 - x \right)^\frac{1}{2} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]