English

∫ 2 − 3 X √ 1 + 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
Sum

Solution

\[ \text{Let I} = \int\left( \frac{2 - 3x}{\sqrt{1 + 3x}} \right)dx\]

Putting 1 + 3x = t
⇒ 3x = t – 1

\[\text{and}\ 3dx = dt\]
\[ \Rightarrow dx = \frac{dt}{3}\]

\[\therefore I = \int\left( \frac{2 - \left( t - 1 \right)}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{3 - t}{\sqrt{t}} \right)dt\]
\[ = \int\left( 3 t^{- \frac{1}{2}} - t^\frac{1}{2} \right)dt\]
\[ = 3\int t^{- \frac{1}{2}} dt - \int t^\frac{1}{2} dt\]
\[ = 3\left[ \frac{t^\frac{- 1}{2} + 1}{- \frac{1}{2} + 1} \right] - \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = 6\sqrt{t} - \frac{2}{3} t^\frac{3}{2} + C\]
\[ = 2\sqrt{t} \left( 3 - \frac{t}{3} \right) + C\]
\[ = 2\sqrt{t}\left( \frac{9 - t}{3} \right) + C \left[ \because t = 1 + 3x \right]\]
\[ = \frac{2}{3}\sqrt{1 + 3x} \left\{ \frac{9 - \left( 1 + 3x \right)}{3} \right\} + C\]
\[ = \frac{2}{3 \times 3}\sqrt{1 + 3x} \left( 8 - 3x \right) + C\]
\[ = \frac{2}{9}\left( 8 - 3x \right) \sqrt{1 + 3x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.05 [Page 33]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.05 | Q 8 | Page 33

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int {cosec}^3 x\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×