Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
उत्तर
`(x^3-3x+1)/sqrt(1-x^2)=−(x^2+3x−1+1−1)/sqrt(1−x2)`
`=−(1-x^2+3x−2)/sqrt(1−x2)`
`=(−1−x^2)/sqrt(1−x^2)−(3x−2)/sqrt(1−x^2)`
`=−sqrt(1−x2)−(3x−2)/sqrt(1−x2)`
`=>int(x^3-3x+1)/sqrt(1-x^2)dx`
`=int(−sqrt(1−x2)−(3x−2)/sqrt(1−x2))dx`
`=−intsqrt(1−x2)dx−int(3x−2)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(1−x2)dx-2int(1)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(t)dt-2int(1)/sqrt(1−x2)dx (Here, t=1−x2.)`
`=−[1/2xsqrt(1−x2)+1/2sin^(−1) x]+3/2xx2sqrtt−2cos^(−1) x+C `
`= −1/2xsqrt(1−x2)−1/2sin^(−1) x+3sqrt(1−x2)−2cos^(−1) x+C`
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`