मराठी

∫ 1 a + b tan x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{a + b \tan x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{1}{a + b \tan x}dx\]

\[ = \int\frac{1}{a + b \frac{\sin x}{\cos x}}dx\]

\[ = \int\frac{\cos x \cdot}{a \cos x + b \sin x}dx\]

\[\text{ Let } \cos x = \text{ A }\frac{d}{dx} \left( a \cos x + b \sin x \right) + \text{ B }\left( a \cos x + b \sin x \right)\]

\[ \Rightarrow \cos x = A \left( - a \sin x + b \cos x \right) + B \left( a \cos x + b \sin x \right)\]

\[1 \cdot \cos x = \left( Ab + B \cdot a \right) \cos x + \sin x\left( - A \cdot a + B \cdot b \right)\]

\[\text{Equating coefficients of like terms}\]

\[ A \cdot b + B \cdot a = 1 . . . \left( 1 \right)\]

\[ - A \cdot a + B \cdot b = 0 . . . \left( 2 \right)\]

\[\text{Multiplying equation} \left( 1 \right) \text{by a and eq} \left( 2 \right) \text{by b and then adding them} \]

\[ A \cdot ab + B \cdot a^2 = a\]

\[ - A \cdot a \cdot b + B b^2 = 0\]

\[ \Rightarrow B = \frac{a}{a^2 + b^2}\]

\[\text{Substituting the value of B in eq} \left( 1 \right)\]

\[ \Rightarrow A \cdot b + \frac{a^2}{a^2 + b^2} = 1\]

\[ \Rightarrow A \cdot b = 1 - \frac{a^2}{a^2 + b^2}\]

\[ \Rightarrow A = \frac{b}{a^2 + b^2}\]

\[ \therefore I = \frac{b}{a^2 + b^2}\int\left( \frac{- a \sin x + b \cos x}{a \cos x + b \sin x} \right)dx + \frac{a}{a^2 + b^2}\int\left( \frac{a \cos x + b \sin x}{a \cos x + b \sin x} \right)dx\]

\[ = \frac{b}{a^2 + b^2}\int\left( \frac{- a \sin x + b \cos x}{a \cos x + b \sin x} \right)dx + \frac{a}{a^2 + b^2}\int dx\]

\[\text{ Putting  a   cos x + b sin x = t in  the Ist  integral}\]

\[ \Rightarrow \left( - a \sin x + b \cos x \right)dx = dt\]

\[ \therefore I = \frac{b}{a^2 + b^2}\int\frac{dt}{t} + \frac{a}{a^2 + b^2}\int dx\]

\[ = \frac{b}{a^2 + b^2} \text{ ln }\left| t \right| + \frac{ax}{a^2 + b^2} + C\]

\[ = \frac{b}{a^2 + b^2} \text{ ln} \left| a \cos x + b \sin x \right| + \frac{ax}{a^2 + b^2} + C................ \left[ \because t = a \cos x + b \sin x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 58 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


` ∫  tan^5 x   sec ^4 x   dx `

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x^3 \cos x^2 dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int {cosec}^3 x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \cot^5 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×