मराठी

∫ 2 2 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int \frac{2}{2 + \sin \left( 2x \right)}\text{ dx }\]
\[ = \int \frac{2}{2 + 2 \sin x \cos x}\text{ dx }\]
\[ = \int \frac{1}{1 + \sin x \cos x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int \frac{\sec^2 x \text{ dx }}{\sec^2 x + \tan x}\]
\[ = \int \frac{\sec^2 x \text{ dx}}{1 + \tan^2 x + \tan x}\]
\[\text{ Let tan x }= t\]
\[ \Rightarrow \sec^2 \text{ x }dx = dt\]
\[ \therefore I = \int \frac{dt}{t^2 + t + 1}\]
\[ = \int\frac{dt}{t^2 + t + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \int \frac{dt}{\left( t + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{2}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{t + \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{2}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{2t + 1}{\sqrt{3}} \right) + C\]
\[ = \frac{2}{\sqrt{3}} \text{ tan }^{- 1} \left( \frac{2 \tan x + 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 3 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{a}{b + c e^x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x \text{ sin 2x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×