मराठी

Evaluate the Following Integrals: ∫ X + 2 √ X 2 + 2 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{x + 2}{\sqrt{x^2 + 2x + 3}}dx\]
\[\text{  We express  }x + 2 = A\left( \frac{d}{d x}\left( x^2 + 2x + 3 \right) \right) + B\]
\[x + 2 = \text{  A(2x + 2) }+ B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[\text{  1 = 2A and 2 = 2A + B }\]
\[\text{ or A }= \frac{1}{2} \text{ and B = 1}\]
\[ \therefore I = \int\frac{\frac{1}{2}\left( 2x + 2 \right) + 1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right)}{\sqrt{x^2 + 2x + 3}}dx + \int\frac{1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \frac{1}{2} I_1 + I_2 . . . (1)\]
\[\text{ Now, }I_1 = \int\frac{\left( 2x + 2 \right)}{\sqrt{x^2 + 2x + 3}}dx\]
\[ \text{ Let }x^2 + 2x + 3 = u\]
` \text{ On differentiating both sides, we get `
\[ \left( 2x + 2 \right)dx = du\]
\[ \therefore I_1 = \int\frac{1}{\sqrt{u}}du\]
\[ = 2\sqrt{u} + c_1 \]
\[ = 2\sqrt{x^2 + 2x + 3} + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\frac{1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \int\frac{1}{\sqrt{x^2 + 2x + 1 - 1 + 3}}dx\]
\[ = \int\frac{1}{\sqrt{\left( x + 1 \right)^2 + \left( \sqrt{2} \right)^2}}dx\]
\[ \text{ Let}\left( x + 1 \right) = u\]
`   \text{ On differentiating both sides, we get `
\[ dx = du\]
\[ \therefore I_2 = \int\frac{1}{\sqrt{\left( u \right)^2 + \left( \sqrt{2} \right)^2}}du\]
\[ = \text{ log}\left| u + \sqrt{\left( u \right)^2 + \left( \sqrt{2} \right)^2} \right| + c_2 \]
\[ = \text{ log}\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get}\]
\[ \therefore I = \frac{1}{2}\left( 2\sqrt{x^2 + 2x + 3} + c_1 \right) + \text{ log}\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c_2 \]
\[ = \sqrt{x^2 + 2x + 3} + \text{ log  }\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c\]
\[\text{ Hence, }\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}}dx = \sqrt{x^2 + 2x + 3} + \log\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 18 | पृष्ठ १११

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

\[\int(3x + 1) \sqrt{4 - 3x - 2 x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×