Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
उत्तर
\[\text{ Let I }= \int\frac{x + 2}{\sqrt{x^2 + 2x + 3}}dx\]
\[\text{ We express }x + 2 = A\left( \frac{d}{d x}\left( x^2 + 2x + 3 \right) \right) + B\]
\[x + 2 = \text{ A(2x + 2) }+ B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[\text{ 1 = 2A and 2 = 2A + B }\]
\[\text{ or A }= \frac{1}{2} \text{ and B = 1}\]
\[ \therefore I = \int\frac{\frac{1}{2}\left( 2x + 2 \right) + 1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 2 \right)}{\sqrt{x^2 + 2x + 3}}dx + \int\frac{1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \frac{1}{2} I_1 + I_2 . . . (1)\]
\[\text{ Now, }I_1 = \int\frac{\left( 2x + 2 \right)}{\sqrt{x^2 + 2x + 3}}dx\]
\[ \text{ Let }x^2 + 2x + 3 = u\]
` \text{ On differentiating both sides, we get `
\[ \left( 2x + 2 \right)dx = du\]
\[ \therefore I_1 = \int\frac{1}{\sqrt{u}}du\]
\[ = 2\sqrt{u} + c_1 \]
\[ = 2\sqrt{x^2 + 2x + 3} + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\frac{1}{\sqrt{x^2 + 2x + 3}}dx\]
\[ = \int\frac{1}{\sqrt{x^2 + 2x + 1 - 1 + 3}}dx\]
\[ = \int\frac{1}{\sqrt{\left( x + 1 \right)^2 + \left( \sqrt{2} \right)^2}}dx\]
\[ \text{ Let}\left( x + 1 \right) = u\]
` \text{ On differentiating both sides, we get `
\[ dx = du\]
\[ \therefore I_2 = \int\frac{1}{\sqrt{\left( u \right)^2 + \left( \sqrt{2} \right)^2}}du\]
\[ = \text{ log}\left| u + \sqrt{\left( u \right)^2 + \left( \sqrt{2} \right)^2} \right| + c_2 \]
\[ = \text{ log}\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get}\]
\[ \therefore I = \frac{1}{2}\left( 2\sqrt{x^2 + 2x + 3} + c_1 \right) + \text{ log}\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c_2 \]
\[ = \sqrt{x^2 + 2x + 3} + \text{ log }\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c\]
\[\text{ Hence, }\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}}dx = \sqrt{x^2 + 2x + 3} + \log\left| \left( x + 1 \right) + \sqrt{x^2 + 2x + 3} \right| + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integrals:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`