Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
\[ = \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[\text{Let }x^2 + 1 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{2x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{2}\]
\[Now, \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[ = \frac{1}{2}\int\frac{\left( t - 1 \right)}{t^3}dt\]
\[ = \frac{1}{2}\int\left( \frac{1}{t^2} - \frac{1}{t^3} \right) dt\]
\[ = \frac{1}{2}\int\left( t^{- 2} - t^{- 3} \right)dt\]
\[ = \frac{1}{2}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} - \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2}\left[ - \frac{1}{t} + \frac{1}{2 t^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 1}{\left( x^2 + 1 \right)} + \frac{1}{2 \left( x^2 + 1 \right)^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 2 \left( x^2 + 1 \right) + 1}{2 \left( x^2 + 1 \right)^2} \right]\]
\[ = \frac{1}{4}\left[ \frac{- 2 x^2 - 2 + 1}{\left( x^2 + 1 \right)^2} \right] = - \frac{1}{4}\frac{\left( 1 + 2 x^2 \right)}{\left( x^2 + 1 \right)^2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)