मराठी

∫ X 3 ( X 2 + 1 ) 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
बेरीज

उत्तर

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
\[ = \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[\text{Let }x^2 + 1 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{2x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{2}\]
\[Now, \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[ = \frac{1}{2}\int\frac{\left( t - 1 \right)}{t^3}dt\]
\[ = \frac{1}{2}\int\left( \frac{1}{t^2} - \frac{1}{t^3} \right) dt\]
\[ = \frac{1}{2}\int\left( t^{- 2} - t^{- 3} \right)dt\]
\[ = \frac{1}{2}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} - \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2}\left[ - \frac{1}{t} + \frac{1}{2 t^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 1}{\left( x^2 + 1 \right)} + \frac{1}{2 \left( x^2 + 1 \right)^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 2 \left( x^2 + 1 \right) + 1}{2 \left( x^2 + 1 \right)^2} \right]\]
\[ = \frac{1}{4}\left[ \frac{- 2 x^2 - 2 + 1}{\left( x^2 + 1 \right)^2} \right] = - \frac{1}{4}\frac{\left( 1 + 2 x^2 \right)}{\left( x^2 + 1 \right)^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 20 | पृष्ठ ५८

संबंधित प्रश्‍न

Evaluate : `int_0^3dx/(9+x^2)`


`∫   x    \sqrt{x + 2}     dx ` 

\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

`  ∫    {1} / {cos x  + "cosec x" } dx  `

Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int e^{2x} \text{ sin x cos x dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×