हिंदी

∫ X 3 ( X 2 + 1 ) 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
योग

उत्तर

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]
\[ = \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[\text{Let }x^2 + 1 = t\]
\[ \Rightarrow x^2 = t - 1\]
\[ \Rightarrow \text{2x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{2}\]
\[Now, \int\frac{x^2 . x}{\left( x^2 + 1 \right)^3}dx\]
\[ = \frac{1}{2}\int\frac{\left( t - 1 \right)}{t^3}dt\]
\[ = \frac{1}{2}\int\left( \frac{1}{t^2} - \frac{1}{t^3} \right) dt\]
\[ = \frac{1}{2}\int\left( t^{- 2} - t^{- 3} \right)dt\]
\[ = \frac{1}{2}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} - \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2}\left[ - \frac{1}{t} + \frac{1}{2 t^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 1}{\left( x^2 + 1 \right)} + \frac{1}{2 \left( x^2 + 1 \right)^2} \right] + C\]
\[ = \frac{1}{2}\left[ \frac{- 2 \left( x^2 + 1 \right) + 1}{2 \left( x^2 + 1 \right)^2} \right]\]
\[ = \frac{1}{4}\left[ \frac{- 2 x^2 - 2 + 1}{\left( x^2 + 1 \right)^2} \right] = - \frac{1}{4}\frac{\left( 1 + 2 x^2 \right)}{\left( x^2 + 1 \right)^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 20 | पृष्ठ ५८

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{1}{\cos 3x - \cos x} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

\[\int\frac{a x^2 + bx + c}{\left( x - a \right) \left( x - b \right) \left( x - c \right)} dx,\text{ where a, b, c are distinct}\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×