मराठी

∫ E 2 X Sin X Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int e^{2x} \text{ sin x cos x dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int e^{2x} \sin x \text{ cos x dx }\]
\[I = \frac{1}{2}\int e^{2x} \left( 2 \sin x \text{ cos  x }\right)\text{ dx }\]
\[ \Rightarrow I = \frac{1}{2}\int e^{2x} \text{ sin 2x dx }\]
`\text{Considering sin  2x  as first function and` `\text{ e}^{2x}`   ` \text{ as second function} `
\[I = \frac{1}{2}\left[ \sin2x\frac{e^{2x}}{2} - \int2\cos2x\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\int e^{2x} \cos2xdx\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where I}_1 = \int e^{2x} \cos2xdx\]
`\text{Considering cos  2x  as first function and` `\text{ e}^{2x}`   ` \text{ as second function} `
\[ I_1 = \cos2x\frac{e^{2x}}{2} - \int - 2 \sin2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{2} + \int e^{2x} \sin2x dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{4} + 2I . . . . . \left( 2 \right)\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\left[ \frac{e^{2x} \cos2x}{2} + 2I \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{e^{2x} \cos2x}{4} - \frac{I}{2} \times 2\]
\[ \Rightarrow 2I = \frac{e^{2x} \left( \sin2x - \cos2x \right)}{4} + C\]
\[ \Rightarrow I = \frac{e^{2x}}{8}\left( \sin2x - \cos2x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.27 [पृष्ठ १४९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.27 | Q 5 | पृष्ठ १४९

संबंधित प्रश्‍न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1}{e^x + 1} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{{cosec}^2 x}{1 + \cot x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \left( \frac{1 - \sin2x}{1 - \cos2x} \right)dx\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×