Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{2x} \sin x \text{ cos x dx }\]
\[I = \frac{1}{2}\int e^{2x} \left( 2 \sin x \text{ cos x }\right)\text{ dx }\]
\[ \Rightarrow I = \frac{1}{2}\int e^{2x} \text{ sin 2x dx }\]
`\text{Considering sin 2x as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[I = \frac{1}{2}\left[ \sin2x\frac{e^{2x}}{2} - \int2\cos2x\frac{e^{2x}}{2}dx \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\int e^{2x} \cos2xdx\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where I}_1 = \int e^{2x} \cos2xdx\]
`\text{Considering cos 2x as first function and` `\text{ e}^{2x}` ` \text{ as second function} `
\[ I_1 = \cos2x\frac{e^{2x}}{2} - \int - 2 \sin2x\frac{e^{2x}}{2}dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{2} + \int e^{2x} \sin2x dx\]
\[ \Rightarrow I_1 = \frac{e^{2x} \cos2x}{4} + 2I . . . . . \left( 2 \right)\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{1}{2}\left[ \frac{e^{2x} \cos2x}{2} + 2I \right]\]
\[ \Rightarrow I = \frac{e^{2x} \sin2x}{4} - \frac{e^{2x} \cos2x}{4} - \frac{I}{2} \times 2\]
\[ \Rightarrow 2I = \frac{e^{2x} \left( \sin2x - \cos2x \right)}{4} + C\]
\[ \Rightarrow I = \frac{e^{2x}}{8}\left( \sin2x - \cos2x \right) + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`