Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
उत्तर
Let I = `int sqrt(1 + x^2)/x^4 "d"x`
= `int sqrt(x^2 (1 + 1/x^2))/x^4 "d"x`
= `int (xsqrt(1 + 1/x^2))/x^4 "d"x`
= `int (xsqrt(1 + 1/x^2))/x^4 "d"x`
Put `1 + 1/x^2` = r2
⇒ `(-2)/x^3 "d"x = 2"t" "dt"`
⇒ `- "dx"/x^3` = t dt
∴ I = `- int "t"^2 "dt"`
= `- "t"^3/3 + "C"`
= `- 1/3(1 + 1/x^2)^(3/2) + "C"`
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`