हिंदी

∫ Cos 5 X Sin X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{\cos^5 \text{ x dx }}{\sin x}\]
\[ = \int\frac{\cos^4 x \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^2 \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \cos  \text{ x dx }}{\sin x}\]
\[ = \int\left( \frac{1 + \sin^4 x - 2 \sin^2 x}{\sin x} \right) \cos \text{ x dx }\]
\[ \text{ Putting  sin x = t}\]
\[ \Rightarrow \cos \text{ x dx }= dt\]
\[ \therefore I = \int\left( \frac{1 + t^4 - 2 t^2}{t} \right)dt\]
\[ = \int\frac{dt}{t} + \int t^3 dt - 2\int\ t\ dt\]
\[ = \text{ ln  }\left| t \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{ ln }\left| \sin x \right| + \frac{1}{4} \sin^4 x - \sin^2 x + C .....................\left[ \because t = \sin x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 77 | पृष्ठ २०४

संबंधित प्रश्न

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int x^2/sqrt(1 - x^6)` dx = ________________


`int cot^2x  "d"x`


`int cos^7 x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int x^3 e^(x^2) dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×