Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{\cos^5 \text{ x dx }}{\sin x}\]
\[ = \int\frac{\cos^4 x \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^2 \cdot \cos \text{ x dx }}{\sin x}\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^2 \cos \text{ x dx }}{\sin x}\]
\[ = \int\left( \frac{1 + \sin^4 x - 2 \sin^2 x}{\sin x} \right) \cos \text{ x dx }\]
\[ \text{ Putting sin x = t}\]
\[ \Rightarrow \cos \text{ x dx }= dt\]
\[ \therefore I = \int\left( \frac{1 + t^4 - 2 t^2}{t} \right)dt\]
\[ = \int\frac{dt}{t} + \int t^3 dt - 2\int\ t\ dt\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - \frac{2 t^2}{2} + C\]
\[ = \text{ ln }\left| t \right| + \frac{t^4}{4} - t^2 + C\]
\[ = \text{ ln }\left| \sin x \right| + \frac{1}{4} \sin^4 x - \sin^2 x + C .....................\left[ \because t = \sin x \right]\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int x^2/sqrt(1 - x^6)` dx = ________________
`int cot^2x "d"x`
`int cos^7 x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
`int x^3 e^(x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`