Advertisements
Advertisements
Question
Ify y=f(u) is a differentiable function of u and u = g(x) is a differentiable function of x then prove that y = f (g(x)) is a differentiable function of x and
`(dy)/(dx)=(dy)/(du)*(du)/(dx)`
Solution
Let δx be a small increment in x.
Let δy and δu be the corresponding increments in y and u respectively
As δx → 0, δy → 0, δu → 0.
As u is differentiable function, it is continuous.
Consider the incrementary ratio `(deltay)/(deltax)`
`"We have ",(deltay)/(deltax)=(deltay)/(deltau)xx(deltau)/(deltax)`
Taking limit as δx → 0, on both sides,
`lim_(deltax->0)(deltay)/(deltax)=lim_(deltax->0)((delty)/(deltau)xx(deltau)/(deltax))`
`lim_(deltax->0)(deltay)/(deltax)=lim_(deltau->0)(deltay)/(deltau)xxlim_(deltax->0)(deltau)/(deltax)...(1)`
Since y is a differentiable function of u , `lim_(deltau->0)(deltay)/(deltau)` exists
and `lim_(deltau->0)(deltay)/(deltax) ` exists as u is a differentiable function of x.
Hence, R.H.S. of (1) exists
`"now " lim_(deltau->0)(deltay)/(deltau)=(dy)/(du) and lim_(deltau->0)(deltau)/(deltax)=(du)/(dx)`
`lim_(deltax->0)(deltay)/(deltax)=(dy)/(du)xx(du)/(dx)`
Since R.H.S. exists, L.H.S. of (1) also exists and
`lim_(deltax->0)(deltay)/(deltax)=(dy)/(dx)`
`dy/dx=(dy)/(du)xx(du)/(dx)`