मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : 12+3tanx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`

बेरीज

उत्तर

Let I = `int (1)/(2 + 3tanx).dx`

= `int(1)/(2 + 3(sinx/cosx)).dx`

= `int cosx/(2cosx + 3sinx).dx`
Put,

Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`

∴ cos x = `"A"(2cosx + 3 sinx ) + "B"[d/dx(2cos x + 3 sin x)]`

= A(2 cos x + 3 sin x) + B(– 2 sin x + 3 cos x)

∴ cos x = (2A + 3B)cos x + (3A – 2B)sin x
Equating the coefficients of cos x sin x on both the sides, we get
2A  3B = 1          ...(1)
and
3A – 2B = 0      ...(2)
Multiplying equation (1) by 22 and equation (2) by 3, we get
4A +6B = 2
9A – 6B = 0
On adding, we get
13A = 2
∴ A = `(2)/(13)`

∴ from (2), 2B = 3A = `3(2/13) = (6)/(13)`

∴ B = `(3)/(13)`

∴ cos x = `(2)/(13)(2cosx + 3sinx) + (3)/(13)(-2sinx +  3cosx)`

∴ I = `int[(2/13(2cosx + 3sinx) + 3/13(-2 sinx + 3cosx))/(2cosx + 3sinx)].dx`

= `int[2/13 + (3/13(-2sinx + 3cosx))/(2cosx + 3sinx)].dx`

= `(2)/(13) 1 dx + (3)/(13) int (-2sinx + 3cosx)/(2cosx + 3sinx).dx`

= `(2)/(13)x + (3)/(13)log|2cos x + 3sinx| + c.     ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (A) | Q 2.06 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 - tan x)`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{x - x^2} dx\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int cos^7 x  "d"x`


`int(log(logx))/x  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int (7x + 9)^13  "d"x` ______ + c


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int dx/(1 + e^-x)` = ______


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int (cos x)/(1 - sin x) "dx" =` ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int 1/(x(x-1))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×