Advertisements
Advertisements
प्रश्न
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
उत्तर
Let I = `int sqrt("x"^2 + 2"x" + 5)` dx
`= int sqrt("x"^2 + 2"x" + 1 + 4)` dx
`= int sqrt(("x + 1")^2 + (2)^2)` dx
`= ("x" + 1)/2 sqrt(("x" + 1)^2 + (2)^2) + (2)^2/2 log |("x + 1") + sqrt(("x + 1")^2 + (2)^2)|` + c
∴ I = `("x" + 1)/2 sqrt("x"^2 + 2"x" + 5) + 2 log |("x + 1") + sqrt("x"^2 + 2"x" + 5)|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int dx/(1 + e^-x)` = ______
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int cos^3x dx` = ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`