Advertisements
Advertisements
प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
उत्तर
`Let I =int1/(x^2sqrt(a^2+x^2)dx`
`Put x = a tantheta`
Differentiating w.r.t. theta we get
`dx = a sec^2 theta d theta`
`theta=tan^-1(x/a)`
`I=int(asec^2theta d theta)/(a^2tan^2thetasqrt(a^2+a^2tan^2theta))`
`=1/a^2intsectheta/tan^2theta d theta`
`=1/a^2intcostheta/sin^2thetad theta`
`=1/a^2intcosecthetacotthetad theta`
`I=-1/a^2cosectheta+c ....(i)`
`But tantheta=x/a`
`cottheta`=a/x`
`cosec^2theta`=1+cot^2theta`
`cosec^2theta=1+a^2/x^2`
`cosec^2theta=(x^2+a^2)/x^2`
`cosectheta=sqrt(x^2_a^2)/x.........(ii)`
`I=-1/a^2sqrt(x^2+a^2)/x+c `
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`sin x/(1+ cos x)`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of
Write a value of
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cos sqrtx` dx = _____________
`int (log x)/(log ex)^2` dx = _________
`int x^x (1 + logx) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int sqrt((a - x)/x) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int 1/(x(x-1)) dx`