Advertisements
Advertisements
प्रश्न
Evaluate: ∫ |x| dx if x < 0
उत्तर
|x| = x; x ≥ 0
= x; x < 0
Let I = ∫ |x| dx, if x < 0
= ∫ - x dx
∴ I = `(- "x"^2)/2` + c
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Write a value of
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int (sin4x)/(cos 2x) "d"x`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`