Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
उत्तर
Let I = `int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Let 2ex + 5 = A(2ex + 1) + B `"d"/"dx"`(2ex + 1)
= 2 Aex + A + B(2ex )
∴ 2ex + 5 = (2A + 2B)ex + A
Comparing the coefficients of ex and constant term on both sides, we get
2A + 2B = 2 and A = 5
Solving these equations, we get
B = - 4
∴ I = `int (5(2"e"^"x" + 1) - 4(2"e"^"x"))/(2"e"^"x" + 1)`dx
`= 5 int "dx" - 4 int (2"e"^"x")/(2"e"^"x" + 1)`dx
∴ I = 5x - 4 log `|2"e"^"x" + 1|` + c ....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`