मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫9+x9-x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`

बेरीज

उत्तर

Let I = `int sqrt((9 + x)/(9 - x)).dx`

= `int sqrt((9 + x)/(9 - x) xx (9 + x)/(9 + x)).dx`

= `int (9 + x)/sqrt(81 - x^2).dx`

= `int (9)/sqrt(81 - x^2).dx + int x/sqrt(81 - x^2).dx`

= `9 int (1)/sqrt(9^2 - x^2).dx + (1)/(2) int (2x)/sqrt(81 - x^2).dx`

= I1 + I2                        ...(Let)

I1 = `9 int (1)/sqrt(9^2 - x^2).dx`

= `9 sin^-1 (x/9) + c_1`

In I2, put 81 – x2 = t
∴ – 2x dx =  dt
∴  2x dx = – dt

I2 = `-(1)/(2) int t^(-1/2) dt`

= `-(1)/(2).t^(1/2)/((1/2)) + c_2`

= `- sqrt(81 - x^2) + c_2`

I = `9 sin^-1 (x/9) - sqrt(81 - x^2) + c`,
where c = c1 + c.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.07 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int sin 4x cos 3x dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int "e"^sqrt"x"` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/(cos x - sin x)` dx = _______________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int cot^2x  "d"x`


`int cos^7 x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int "cosec"^4x  dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int 1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×