Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
उत्तर
Let I = `int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Let `(3"e")^"2t" + 5 = "A"(4"e"^"2t" - 5) + "B" "d"/"dt" (4"e"^"2t" - 5)`
`= 4 "Ae"^"2t" - 5"A" + "B"(8"e"^"2t")`
∴ `(3"e")^"2t" + 5 = (4"A" + 8"B") "e"^"2t" - 5"A"`
Comparing the coefficients of e2t and constant term on both sides, we get
4A + 8B = 3 and - 5A = 5
Solving these equations, we get
A = - 1 and B = `7/8`
∴ I = `int (- 1(4"e"^"2t" - 5) + 7/8 (8"e"^"2t"))/(4"e"^"2t" - 5)` dt
`= - int "dt" + 7/8 int (8"e"^"2t")/(4"e"^"2t" - 5)` dt
∴ I = `- "t" + 7/8 log |4"e"^"2t" - 5|` + c .....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`1/(1 + cot x)`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).