Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (1)/(7 + 2x^2).dx`
उत्तर
I = `int (1)/(7 + 2x^2).dx`
= `(1)/(2) int (1)/(7/2 + x^2).dx`
= `(1)/(2) int (1)/((sqrt(7/2))^2 + x^2).dx`
= `(1)/(2).(1)/((sqrt(7/2))) tan^-1 |x/sqrt(7/2)| + c`
= `(1)/sqrt(14)tan^-1 |(sqrt(2)x)/sqrt(7)| + c`.
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int log ("x"^2 + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int logx/x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int x^3"e"^(x^2) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int x^3 e^(x^2) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`