Advertisements
Advertisements
प्रश्न
Find `int dx/sqrt(sin^3x cos(x - α))`.
उत्तर
Let I = `int dx/sqrt(sin^3x cos(x - α))`
= `int dx/sqrt((sin^4x)/sinx [cosx cosα + sinx sinα]`
= `int dx/(sin^2 xsqrt(cotx cosα + sinα)`
= `int ("cosec"^2x dx)/sqrt(cotx cosα + sinα)`
Let cot x cos α + sin α = t
Then, dt = – cosec2 x cos α dx
∴ I = `int (-dt)/(cosαsqrt(t))`
= `(-2sqrt(t))/cosα + C`
= `(-2sqrt(cotx cosα + sinα))/cosα + C`
= `- 2 sec αsqrt(cotx cosα + sinα) + C`.
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :`intxlogxdx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int x/(x + 2) "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
If f'(x) = `x + 1/x`, then f(x) is ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`