मराठी

Evaluate π∫0π/4log(1+tanx)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int_0^(π//4) log (1 + tanx)dx`.

बेरीज

उत्तर

Let I = `int_0^(π//4) log (1 + tanx)dx`  ...(i)

By using property

`int_0^a f(x) = int_0^a f(a - x)`

I = `int_0^(π//4) log [1 + tan(π/4 - x)]dx`

= `int_0^(π//4) log [1 + (tan  π/4 - tan x)/(1 + tan  π/4 tan x)]dx`

= `int_0^(π//4) log [1 + (1 - tanx)/(1 + tanx)]dx`

= `int_0^(π//4) log [2/(1 + tanx)]dx`

= `int_0^(π//4) log 2 - int_0^(π//4) log (1 + tanx)dx`  ...(ii)

On adding equations (i) and (ii),

2I = `int_0^(π//4) log (1 + tanx)dx + int_0^(π//4) log 2 dx - int_0^(π//4) log (1 + tanx)dx`

`\implies` 2I = `int_0^(π//4) log 2 dx` 

`\implies` 2I = `log 2 int_0^(π//4) 1.dx`

`\implies` 2I = `log 2 [x]_0^(π//4)`

`\implies` I = `log2/2 xx π/4 = π/8 log 2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 1

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×