मराठी

By using the properties of the definite integral, evaluate the integral: ∫04|x-1|dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`

बेरीज

उत्तर

`int_0^4  abs (x - 1)  dx`

Define,

`abs(x - 1) = {(-(x-1), if x-1<0, or x < 1),(x-1, if x - 1>=0, or x>=1):}`

`int_0^1 abs (x - 1)  dx + int_1^4  abs(x - 1)  dx`

`int_0^1 - (x - 1)  "dx" + int_1^4  (x - 1) dx`

`= - [x^2/2 - x]_0^1 + [x^2/2 - x]_1^4`

`= [(1/2 - 1) - 0] + (16/2 - 4) - (1/2 - 1)`

`= 1/2 + 4 + 1/2`

`= (1 + 8 + 1)/2`

= 5

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 18 | पृष्ठ ३४७

संबंधित प्रश्‍न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


Which of the following is true?


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×