Advertisements
Advertisements
प्रश्न
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
उत्तर
Let `I = int_0^a f(x) g(x) dx`
`= int_0^a f(a - x) [4 - g(a - x)] dx`
`= 4 int_0^a f(a - x) dx - int_0^a f(a - x) g (a - x) dx`
Let a - x = t
⇒ - dx = dt
When x = 0, t = a
and x = a, t = 0
`I = -4 int_a^0 f (t) dt + int_a^0 f (t) g (t) dt`
`= 4 int_0^a f (t) dt - int_0^a f (t) g (t) dt`
`= 4 int_0^a f (x) dx - int_0^a f (x)g (x) dx `
`= 4 int_0^a f (x) dx - I`
⇒ `2I = 4 int_0^a f (x) dx`
Hence, `I = 2 int_0^a f (x) dx`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/2} cos^2x dx` = ______
`int_0^1 x tan^-1x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_a^b f(x)dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
`int_1^2 x logx dx`= ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`