मराठी

Show that ∫0af(x)g(x)dx=2∫0af(x)dx if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.

बेरीज

उत्तर

Let `I = int_0^a f(x) g(x) dx`

`= int_0^a f(a - x) [4 - g(a - x)] dx`

`= 4 int_0^a f(a - x) dx - int_0^a f(a - x) g (a - x)  dx`

Let a - x = t

⇒ - dx = dt

When x = 0, t = a

and x = a, t = 0

`I = -4 int_a^0 f (t) dt + int_a^0 f (t) g (t) dt`

`= 4 int_0^a f (t) dt - int_0^a f (t) g (t)  dt`

`= 4 int_0^a f (x) dx - int_0^a f (x)g (x) dx `

`= 4 int_0^a f (x) dx - I`

⇒ `2I = 4 int_0^a f (x) dx`

Hence, `I = 2 int_0^a f (x) dx`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 19 | पृष्ठ ३४७

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^{pi/2} xsinx dx` = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 x tan^-1x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_a^b f(x)dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


`int_1^2 x logx  dx`= ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×