Advertisements
Advertisements
प्रश्न
Find `dy/dx, if y = cos^-1 ( sin 5x)`
उत्तर
`y = cos^-1 ( sin 5x )`
`y = cos^-1 [ cos( π/2 - 5x )]`
∴ `y = π/2 - 5x`
Diff.w.r.t.x.
`dy/dx = 0 - 5 xx 1`
`dy/dx = - 5`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_2^4 x/(x^2 + 1) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2} cos^2x dx` = ______
`int_0^1 x tan^-1x dx` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`