मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`

बेरीज

उत्तर

`int _0^(pi/2) "sin"^ 2  "x"  "dx"`

i = `int _0^(pi/2) (1 - cos 2"x"   "dx") /2`         [∵ 1 - 2 cos2 θ = 2 sin 2 θ]

`["x"/2 - ("sin"2"x")/4]_0^(pi/2)`

=`(pi/4 -("sin" pi )/4) - (0 - 0)`

=`pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (February) Set 1

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_0^2 e^x dx` = ______.


`int_0^1 "e"^(2x) "d"x` = ______


`int_2^4 x/(x^2 + 1)  "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


`int_4^9 1/sqrt(x)dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×