Advertisements
Advertisements
प्रश्न
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
उत्तर
`int _0^(pi/2) "sin"^ 2 "x" "dx"`
i = `int _0^(pi/2) (1 - cos 2"x" "dx") /2` [∵ 1 - 2 cos2 θ = 2 sin 2 θ]
`["x"/2 - ("sin"2"x")/4]_0^(pi/2)`
=`(pi/4 -("sin" pi )/4) - (0 - 0)`
=`pi/4`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^2 e^x dx` = ______.
`int_0^1 "e"^(2x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_4^9 1/sqrt(x)dx` = ______.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`