मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that ∫0af(x)dx=∫0af(a-x) dx hence evaluate ∫0(π/2)sinx/(sinx+cosx) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`

उत्तर

Let I = `int_0^af(x)dx`

Put x = a – t
∴ dx = – dt
When x = 0, t = a - 0 = a
When x = a, t = a - a = 0

`I=int_0^af(x)dx=int_a^0f(a-t)(-dt)`

`=-int_a^0f(a-t)dt`         ......[`∵int_a^bf(x)dx=-int_b^af(x)dx`]

`=int_0^af(a-x)dx`         ......[`∵int_a^bf(x)dx=-int_b^af(t)dx`]

`therefore int_0^af(x)dx=int_0^af(a-x)dx`

Let I=`int_0^(pi/2)sinx/(sinx+cosx)`            ........(i)

`I=int_0^(pi/2)sin(pi/2-x)/(sin(pi/2-x)+cos(pi/2-x))`       ......[`∵int_0^af(x)dx=-int_0^af(a-x)dx`]

`=int_0^(pi/2)cosx/(cosx+sinx)dx`         ............(ii)

Adding (i) and (ii), we get

`2I=int_0^(pi/2)(sinx+cosx)/(sinx+cosx)dx`

`=int_0^(pi/2)1 dx`

`=[x]_0^(pi/2)`

`=pi/2-0`

`2I=pi/2`

`I=pi/4`

`therefore int_0^(pi/2)sinx/(sinx+cosx)dx=pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (July)

APPEARS IN

संबंधित प्रश्‍न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


`int_0^1 "e"^(2x) "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


 `int_-9^9 x^3/(4-x^2) dx` =______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×