Advertisements
Advertisements
प्रश्न
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
उत्तर
Let I = `int_0^af(x)dx`
Put x = a – t
∴ dx = – dt
When x = 0, t = a - 0 = a
When x = a, t = a - a = 0
`I=int_0^af(x)dx=int_a^0f(a-t)(-dt)`
`=-int_a^0f(a-t)dt` ......[`∵int_a^bf(x)dx=-int_b^af(x)dx`]
`=int_0^af(a-x)dx` ......[`∵int_a^bf(x)dx=-int_b^af(t)dx`]
`therefore int_0^af(x)dx=int_0^af(a-x)dx`
Let I=`int_0^(pi/2)sinx/(sinx+cosx)` ........(i)
`I=int_0^(pi/2)sin(pi/2-x)/(sin(pi/2-x)+cos(pi/2-x))` ......[`∵int_0^af(x)dx=-int_0^af(a-x)dx`]
`=int_0^(pi/2)cosx/(cosx+sinx)dx` ............(ii)
Adding (i) and (ii), we get
`2I=int_0^(pi/2)(sinx+cosx)/(sinx+cosx)dx`
`=int_0^(pi/2)1 dx`
`=[x]_0^(pi/2)`
`=pi/2-0`
`2I=pi/2`
`I=pi/4`
`therefore int_0^(pi/2)sinx/(sinx+cosx)dx=pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
`int_0^1 "e"^(2x) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_-9^9 x^3/(4-x^2) dx` =______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`