मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫logx/(1+logx)^2dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

उत्तर


Problem:

`intlogx/(1+logx)^2dx`
adding and substracting 1 from numerator

`int (1-1+logx)/(1+logx)^2dx`

`int (1+logx)/(1+logx)^2dx-int(1)/(1+logx)^2 dx`

`int 1/(1+logx)dx-int(1)/(1+logx)^2 dx`
For the integral

` int 1/(1+logx)dx`
integrate by parts within the sum: ∫fg'=fg−∫f'g

`f= 1/(1+logx)dx, g'=1`

`f'=-(1)/(1+logx)^2, g=x`

`=-int(1)/(1+logx)^2 dx-int -1/(1+logx)^2dx+x/(log(x)+1)`

`=x/(log(x)+1)`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (October)

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate : `intsec^nxtanxdx`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^{pi/2} log(tanx)dx` = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_4^9 1/sqrt(x)dx` = ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×