Advertisements
Advertisements
प्रश्न
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
उत्तर
We have I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` .....(1)
= `int_2^8 sqrt(10 - (10 - x))/(sqrt(10 - x) + sqrt(10 - (10 - x)) "d"x` .....By (P3)
⇒ I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x)) "d"x` ....(2)
Adding (1) and (2), we get
2I = `int_2^8 1"d"x = 8 - ` = 6
Hence I = 3
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate`int (1)/(x(3+log x))dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^9 1/(1 + sqrtx)` dx = ______
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_1^2 x logx dx`= ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`