मराठी

Find d∫2810-xx+10-xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`

बेरीज

उत्तर

We have I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`  .....(1)

= `int_2^8 sqrt(10 - (10 - x))/(sqrt(10 - x) + sqrt(10 - (10 - x)) "d"x`  .....By (P3)

⇒ I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x)) "d"x`  ....(2)

Adding (1) and (2), we get

2I = `int_2^8 1"d"x = 8 - ` = 6

Hence I = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 11 | पृष्ठ १५२

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate`int (1)/(x(3+log x))dx` 


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


`int_1^2 x logx  dx`= ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×